	Exponential functions (Half-life)	
1	The amount A_t micrograms of a certain radioactive substance remaining after t years decreases according to the formula $A_t = A_0 e^{-0.003t}$, where A_0 is the amount present initially	
	Find the half-life of this substance	4
2	Polonium P-210 is a radioactive substance which decays according to the law $M_t = M_0 e^{-0.005t}$, where M_0 is the initial mass and M_t is the mass remaining after t days	
	Determine the half-life of Polonium P-210	4
3	The concentration of a pesticide in soil can be modelled by the equation $P_t = P_0 e^{-0.028t}$.	
	Where P_0 is the initial concentration, Pt is the concertation at time t t is time in days after the application of the pesticide	
	Determine the half-life of this pesticide	4
4	A small meteor passes through a dust shower. It picks up particles and gains weight (kg) in time t (hours) according to the expression $W_t = 1.2e^{0.06t}$	
	(a) What was the initial weight of the meteor	1
	(b) How long will it take for the meteor to double in weight	4
5	The number of bacteria in a sample being monitored is increasing according to the formula $B_t = 100e^{0.7t}$. B_t is the number of bacteria after t hours.	
	(a) Calculate the number of bacteria present at the start of the monitoring process	1
	(b) How long, in hours and minutes, will it take for the sample to triple in size	5

	Exponential Half-Life - Answers	
1	Set up a half-life equation i.e.	1 = $2e^{-0.003t}$
		$1/2 = e^{-0.003t}$
	Take natural logs of both sides	$\log_{e}(\frac{1}{2}) = \log_{e}e^{-0.003t}$
	Simplify	$\log_{e}(\frac{1}{2}) = -0.003t$
	Solve to find <i>t</i>	$\frac{\log_{e}(1/2)}{-0.003} = t$, $t = 231$ years
		-0.003
2	Set up a half-life equation i.e.	1 = $2e^{-0.005t}$
		$1/_2 = e^{-0.005t}$
	Take natural logs of both sides	$\log_{e}(\frac{1}{2}) = \log_{e} e^{-0.005t}$
	Simplify	$\log_{e}(\frac{1}{2}) = -0.005t$
	Solve to find <i>t</i>	$\frac{\log_{e}(1/2)}{-0.005} = t , \ t = 138.6 \text{ days}$
		-0.005
3	Set up a half-life equation i.e.	$1 = 2e^{-0.028t}$
		$1/2 = e^{-0.028t}$
	Take natural logs of both sides	$\log_{e}(\frac{1}{2}) = \log_{e}e^{-0.028t}$
	Simplify	$\log_{e}(\frac{1}{2}) = -0.028t$
	Solve to find <i>t</i>	$\log_{e}(1/2)$ = t = 24.8 days
		$\frac{\log_{e}(1/2)}{-0.028} = t , \ t = 24.8 \text{ days}$
4	Substitute to O into the equation	W 12-0 W 12K-
4	Substitute <i>t</i> = 0 into the equation	$W_t = 1.2e^3, W_t = 1.2 \text{ Kg}$
	Set up an equation i.e.	$2.4 = 1.2e^{0.06t}$
		$2 = e^{0.06t}$
	Take natural logs of both sides	$\log_{e}(2) = \log_{e} e^{0.06t}$
	Simplify	$log_{e}(2) = 0.06t$
	Solve to find <i>t</i>	$\frac{\log_{e}(2)}{2} = t$, $t = 11.55$ hours
		0.06
5	Substitute <i>t</i> = 0 into the equation	$B_t = 100e^0, B_t = 100$
(h)		0.7/
(b)	Set up an equation i.e.	
		$3 = e^{0.7t}$
	Take natural logs of both sides	$\log_{e}(3) = \log_{e} e^{0.7t}$
	Simplify	$\log_{e}(3) = 0.7t$
	Solve to find <i>t</i>	$\frac{\log_{e}(3)}{0.7} = t$, $t = 1.5694$ hours
	Answer in hours and minutes	0.7 1 hour and 34 minutes
		r nour und 5 r minute5